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Numerical Solution of the Quasilinear Poisson Equation in a
Nonuniform Triangle Mesh1

Alan M. Winslow

Lawrence Radiation Laboratory, Livermore, California

is to be solved over a region R where l is a positive function
of the rectangular coordinates x, y, and may also dependA finite-difference method using a nonuniform triangle mesh is

described for the numerical solution of the nonlinear two-dimen- on w or its derivatives, and S is a given function of x, y.
sional Poisson equation = ? (l=w) 1 S 5 0, where l is a function of The boundary conditions are taken to be of the form a 1
w or its derivatives, S is a function of position, and w or its normal b ­w/­n 5 c, where ­w/­n is the normal derivative and a,
derivative is specified on the boundary. The finite-difference equa-

b, c are constants that may take on different values overtions are solved by successive overrelaxation. The triangle mesh,
different portions of the boundary. The dependent variablewhich is constructed numerically by solving Laplace’s equation, is

easily adapted to nonrectangular boundaries and interfaces. Exam- w is assumed to be continuous over R, and the quantities
ples of numerical results are given for the magnetostatic problem l, S are assumed to be continuous over subregions of R,
with iron, and other possible applications are mentioned. Q 1967 so that there may be interfaces at which l and S are discon-
Academic Press

tinuous; at such interfaces, l(­w/­n) is assumed to be con-
tinuous.

The basic assumptions of the finite-difference method1. INTRODUCTION
are: (a) the boundaries and interfaces of the region R are
approximated by straight-line segments; (b) the region isThe advantages of a general triangle mesh for the numer-
triangulated; (c) the values of w are defined at triangleical solution of partial differential equations in two dimen-
vertices, and w is assumed to vary linearly over each trian-sions were first pointed out in 1943 [1], and calculations
gle; and (d) l and S are assumed to be constant overby hand [2] or by electric analog computer [3] using this
each triangle.type of mesh were followed by digital computer applica-

The type of triangulation used here is topologicallytions [4–7]. The finite-difference equations given in [5],
regular; that is, it is topologically equivalent to an equilat-which were developed to solve parabolic equations by the
eral triangle array in which six triangles meet at everyalternating direction method, are adapted in this paper to
interior mesh point. Since any polygonal region can bethe solution of elliptic equations by the method of succes-
triangulated, the method can be applied to regions ofsive overrelaxation.
any shape and will produce a mesh in which boundariesIn the following sections we state the basic assumptions,
and interfaces lie entirely on mesh lines. This causesderive the difference equations, discuss methods for their
a considerable simplification in the finite-differencesolution, and present numerical results from an application
equations and in the specification of boundary condi-to the two-dimensional magnetostatic problem with iron.
tions.Other applications are also mentioned, and in an appendix

a numerical method is described for constructing the non-
uniform mesh by solving a boundary-value problem based 3. DERIVATION OF THE DIFFERENCE EQUATIONS
on Laplace’s equation.

In order to establish different properties of the finite-
difference equations, we give two different derivations2. DESCRIPTION OF THE METHOD
based on the assumptions of Section 2.

The generalized Poisson equation
Integral Derivation [5]

= ? (l=w) 1 S 5 0 (1)
Instead of Eq. (1), let us consider the nonlinear diffu-

sion equation
Reprinted from Volume 1, Number 2, November 1966, pages 149–

172.
1 This work was performed under the auspices of the U.S. Atomic c

­w

­t
5 = ? (l=w) 1 S, (2)

Energy Commission.
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where the vector s† represents the vector s rotated clock-
wise by an angle f/2.

Within each triangle the flux of the diffusing quantity is
given by

Fi11/2 5 2li11/2=wi11/2 .

The conservation law can be expressed through Gauss’
theorem by equating the surface integral of the left side

FIG. 1. Primary and secondary mesh lines. of Eq. (2) over the secondary mesh element to the integral
of the normal component of F over the boundary of the
secondary mesh element, added to the surface integral of S.

where t represents time, and the positive coefficient c, like The flux contribution Ri11/2 from the triangle i 1 1/2
l, may be a function of w. For a steady state, (2) reduces shown in Fig. 2 to the rate of change R in the secondary
to (1). mesh element is

Consider an interior mesh point in a triangle mesh in
which the assumptions of Section 2 hold. Associated with Ri11/2 5 Fi11/2 ? (m†

1 1 m†
2) 5 AsFi11/2 ? (s†

i11 2 s†
i ).

the primary triangle mesh we define a secondary mesh of
12-sided figures whose vertices are alternately the centroids Summing around the vertex and using the central vertex
of the six adjacent triangles and the midpoints of the six value w as the average value over the dodecagon, we obtain
adjacent sides. This is shown in Fig. 1, in which a single
such figure is shaded. The secondary mesh element sur-
rounding a given vertex includes one-third of the area of O6

i51
ci11/2

Dwi11/2

Dt
ai11/2 P

Dw

Dt O
6

i51
ci11/2ai11/2

each of the six primary mesh triangles sharing that vertex,
so that each triangle of area A is divided into three equal

5 2 O6
i51

Fi11/2
1
2

(s†
i11 2 s†

i ) 1 O6
i51

Si11/2ai11/2quadrilaterals of area a 5 A/3.
Consider the triangle i 1 As defined by the two side vectors

si , si11 , with values wi , wi11 , w at the respective vertices as
orshown in Fig. 2. Since w is assumed to be a linear function

of position, each such triangle has a vector =wi11/2 associ-
ated with it which satisfies the equation

Dw 5
Dt[2o6

i51 Fi11/2 ? As(s†
i11 2 s†

i ) 1 S]
G

, (5)

wj 5 w 1 sj ? =wi11/2 , j 5 i, i 1 1, (3)

where
and is given by

G 5 O6
i51

ci11/2ai11/2 ,
(6)

=wi11/2 5
(wi 2 w)s†

i11 2 (wi11 2 w)s†
i

si ? s†
i11

, (4)

S 5 O6
i51

Si11/2ai11/2 .

Using (4), and letting ci 5 wi 2 w, we can express the flux
sum in Eq. (5) as

F 5
1
2 Oi

li11/2[(cis
†
i11 2 ci11s

†
i ) ? (s†

i11 2 s†
i )]

s†
i ? si11

5
1
2 Oi

li11/2[cisi11 ? (si11 2 si) 1 ci11si ? (si 2 si11)]
s†

i ? si11
,

where we have made use of the relations u† ? v† 5 u ? v and
u ? v† 5 2u† ? v. Since the sum is cyclic, we can reduce the

FIG. 2. Vectors used in flux calculation. index by one in the second term, obtaining
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gradient ­w/­n is prescribed at a boundary, we add an
F 5

1
2Oi

F li11/2

s†
i ? si11

si11 ? (si11 2 si) 1
li21/2

s†
i21 ? si

si21 ? (si21 2 si)Gci external current Ij at each surface point j given by

5O
i

wi(wi 2 w).
(7)

Ij 5 F­w

­nGj

1
2

(lj21/2sj21/2 1 lj11/2sj11/2)

The coefficient of ci in (7) is called the coupling coefficient
where 1/2(sj21/2 1 si11/2) is the length of boundary associ-for the line joining the vertex i and the center. It depends
ated with the boundary point and lj61/2 are the coefficientsonly on the nature of the two triangles having this as a
of the associated triangles.common side, and can be written

Variational Derivation [1, 6, 7, 8]
wi 5 As(li11/2 cot ui11/2 1 li21/2 cot ui21/2), (8)

Consider the integral

where the angles ui61/2 lie opposite the side i. We note
that the coupling between two points x1 , y1 and x2 , y2 is I(w) 5

1
2
EE

R
[l(w9)(=w)2 2 2Sw] dx dy, (13)

symmetric, so that

where w, l, and S satisfy the conditions of Section 2. Usingw12 5 w21 . (9)
a restricted variation [9] in which w9 is held fixed, with the
auxiliary condition w9 5 w, Eq. (1) is the Euler equationMoreover, wi can be positive, negative, or zero, but the
for (13), so that I(w) will be minimized if w satisfies (1).sum of the couplings around a given point is positive:

Given a triangulation of the region over which w is to
be found, we can derive the finite-difference equations
from (13) by an adaption of the Ritz variational method.O6

i51
wi 5

1
4 Oi

li11/2

Ai11/2
(si11 2 si)2, (10)

Let ai(x, y) be a so-called pyramid function [10] which
takes on the value 1 at the mesh point (xi , yi), the value
0 at the nearest-neighbor mesh points, and varies linearlysince s†

i ? si11 5 2Ai11/2 .
Thus, Eq. (2) can be written in finite-difference approxi- with position. Then if u(xi , yi) is the value of u at the mesh

point (xi , yi),mation

u 5 O
all i

ai(x, y)u(xi , yi) (14)Dw

Dt
5

1
G FO6

i51
wi(wi 2 w) 1 SG (11)

is a continuous, piecewise linear function which takes on
so that for a steady state the finite-difference analog of the values of u at mesh points and satisfies the assumptions
(1) is of Section 2. Substituting u for w in (13), we minimize I(u)

by setting ­I/­u 5 0 at each mesh point, thus obtaining
the finite-difference equations as the minimum conditionsO

i
wi(wi 2 w) 1 S 5 0. (12)

for the integral (13).
From the first term in (13) we find

The continuity properties of the finite-difference solu-
tion are: (a) w is continuous; (b) (=w)t is continuous; (c) 1

2
­

­u
(=u)2 5 =a ? =u.(l=w)n is continuous, where t and n refer to tangential and

normal components, respectively. Statement (a) follows
from assumption (c) of Section 1, and (b) follows from the Making use of (4) and
expression (4) for =w. Statement (c) is a consequence of
our derivation by means of Gauss’ theorem together with

=ai11/2 5
1

2Ai11/2
(s†

i 2 s†
i11)(7) which shows that the normal components of the fluxes

have been replaced by mesh currents wi(wi 2 w) flowing
along mesh lines; conservation of these currents is guaran-

we get as the contribution to ­I/­u from the first term
teed by (9).

Boundary points are treated in the same manner as inte-
rior points except that the coefficient l of material outside S­I

­uD1
5 O

i
EE (l=a ? =u)i11/2 dx dy 5 2 O6

i51
wi(ui 2 u),

the boundary is set equal to zero. If the outward normal
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where the wi are the same coupling coefficients as before, In each iteration cycle the mesh points are swept in se-
quence, the nearest-neighbor values un,n11

i representingand the last sum is over the nearest neighbors of a given
mesh point. un11

i if it already has been calculated, or un
i .

If now we let l be a function of u or of its derivatives,From the second term in (13) we obtain
so that the wi are functions of u, then, depending on the
rate of change of l with u, the equations (18) can becomeS­I

­uD2
5 2 O

i
Si11/2 EE ai dx dy 5 2

1
3 O

6

i51
Si11/2Ai11/2 . unstable. We can maintain stability, however, by lineariz-

ing the problem in the following way [12]: (a) recalculate
(15) the wi in (18) before each cycle; (b) underrelax the newly

calculated values wnew
i , giving

Setting (­I/­u)1 1 (­I/­u)2 5 0 we get

wn11
i 5 %wnew

i 1 (1 2 %)wn
i , (19)O

i
wi(ui 2 u) 1

1
3 Oi

Si11/2Ai11/2 5 0 (16)

where 0 , % , 1, to be used in calculating un11 by means
of (18). Thus the nonlinear problem is replaced by a se-as before (12).
quence of linear problems whose solutions have beenWe note from (15) that the assignment of one-third of
found to converge to the solution of the original problemthe area of a triangle to each source density Si11/2 is the
provided % is sufficiently small.consequence of our assumption that u varies linearly with

The value of g used in nonlinear regions is usually closeposition, rather than appearing as the result of an arbitrary
to one, for reasons of stability. In linear regions, however,partitioning of each triangle as in the previous derivation.
it is important to choose g to optimize the convergence
rate h, defined as4. NUMERICAL SOLUTION OF THE

DIFFERENCE EQUATIONS

For the linear case of (1), where l is independent of w, hn 5 Foi (un11
i 2 un

i )2

oi (un
i 2 un21

i )2G1/2

(20)
the corresponding difference equations (12) are linear in
w. The coefficient matrix wi can be shown to be positive-
definite [7], and the usual methods of successive overrelax- summed over the whole mesh. Since the coefficient matrix
ation can be used to solve (12). The use of this method in (18) is block tridiagonal (though not two-cyclic), analogy
for nonlinear problems has been justified mathematically with the ordinary theory of successive overrelaxation sug-
only for certain cases [11], but we have found that the gests using the optimum value gopt given by
iterative methods described below converge when (1) is
elliptic, provided extreme mesh distortions are avoided.

gopt 5
2

1 1 (1 2 l2)1/2 , (21)
Linearized Overrelaxation

Let us first assume that (1) is linear. Solving (16) for u
where, for a given g (less than gopt) and the resulting h,at a given mesh point, we get for the (n 1 1)st iteration
we can obtain l from the relation

un11 5
oi wiun

i 1 S
oi wi

, (17)
l 5

g 1 h 2 1

g Ïh
. (22)

where the denominator is positive by (10). Introducing the
overrelaxation parameter g (0 , g , 2) we have By choosing different values of g and observing the corre-

sponding asymptotic values of h, we have found that, for
a linear problem, (22) holds to a high degree of accuracy,

un11 5 un 1 g Soi wiun,n11
i 1 S

oi wi
2 unD yielding values of l that are constant to five significant

figures.
For nonlinear as well as linear problems we have beenor

able to combine (20), (21), and (22) into a satisfactory
automatic scheme for optimizing g by recalculating it
every cycle in the following way: given gn and hn, weun11 5 un 1

g
oi wi

FO
i

wi(un,n11
i 2 un) 1 SG. (18)

have
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l 5
gn 1 hn 2 1

gn Ïhn
, un11

k 5 un
k 2 g

Fk(un11, un11, ..., un11
k21 , un

k , ..., un
N)

(­Fk/­uk)(un11, un11, ..., un11
k21 , un

k , ..., un
N)

(k 5 1, 2, ..., N),
(25)

g9opt 5
2

1 1 (1 2 l2)1/2 2 g0 , (23)

where N is the number of mesh points.
gn11 5 bg9opt 1 (1 2 b)gn.

Aitken’s d 2 Method [15]
The constant g0 P 0.01 is often useful in nonlinear prob-

The set of simultaneous equations (17) can be writtenlems in permitting g to decrease when necessary, although
as in linear problems it is better to have g somewhat too

u 5 f(u). (26)large than too small. The constant b P 0.05 underrelaxes
g so that its changes do not appreciably perturb h. Occa-

The Aitken process consists of using (26) twice followedsionally h may be greater than 1; we then hold g constant
by a linear interpolation. Starting with a value un

k , we haveuntil h has been less than 1 for a certain number (p5–15) of
cycles, after which we resume the automatic optimization.

u*k 5 f(un
k),The dimensionless quantity

u**k 5 f(u*k ),

«n11 5 Foi (un11
i 2 un

i )2

oi (un11
i )2 G1/2

,
leading to the sequence

summed over all i, is used to test for convergence. We
un11

k 5 un
k 2 g

(u*k 2 un
k)2

un
k 2 2u*k 1 u**k

(k 5 1, 2, ..., N), (27)require «n11 , «0 , where usually «0 5 1026 or 1027. A better
test, based on extrapolation with constant h, would be
«n11 , «0(1 2 hn11).

where we have again introduced the overrelaxation factor
g. This method requires evaluation of f(u) twice at eachNonlinear Overrelaxation
vertex, while Newton’s method requires evaluation of F(u)

The set of simultaneous nonlinear equations and ­F/­u.

F(u) 5 O
i

wi(ui 2 u) 1 S 5 0 (24) 5. APPLICATION TO MAGNETOSTATIC PROBLEMS

Plane magnetostatic problems containing iron, because
can be solved by replacing them by a sequence of nonlinear of their strong nonlinearity, provide a good example of
equations (17) in which the six neighboring values ui of a the usefulness of the method. It is well known that such
given vertex are held fixed and each equation is regarded problems can be put in the form of Eq. (1) by use of the
as a nonlinear equation in the single variable u belonging magnetic vector potential. Consider an arbitrary distribu-
to that vertex, the dependence of the wi on u being explic- tion of infinite straight parallel conductors carrying con-
itly taken into account. As each new value is obtained, it stant currents parallel to the z-axis. The magnetic field
is substituted for the old value. H(x, y) and the magnetic induction B(x, y) have compo-

For the solution of such nonlinear equations in a single nents only in the x,y-plane while the current density j and
variable, various iterative methods are available. Perhaps magnetic vector potential A have only z-components which
the best known are Newton’s method and Aitken’s d2 we label simply j(x, y) and A(x, y).
method. From the relations B 5 eH 5 = 3 A and = 3 H 5

4fj, where e(x, y, B) is the magnetic permeability and
Newton’s Method [13, 14] B 5 uBu, we obtain

Solving (24) by Newton’s method, one iteration gives

= 3 S1
e

= 3 AD5 4fj. (28)
un11 5 un 2

F n

(­F/­u)n .

Because of the single-component nature of A and j, (28)
reduces toIntroducing the overrelaxation factor g in the usual way,

one iteration at each vertex yields the sequence of equa-
tions = ? (c=A) 5 24fj, (29)
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median plane by setting all external coupling coefficients
on the median plane equal to zero. Initial values of the
vector potential are taken to be zero at all mesh points.

The method can be applied to any plane distribution of
air, conductors, and iron and has been used to calculate
the fields of various dipole, quadrupole, and sextupole
magnets. Figures 3–11 show some results obtained for the
CERN proton synchrotron C-magnet (open sector), aFIG. 3. C-magnet showing material interfaces.
quadrupole, and a sextupole magnet. Equipotentials,
which are also lines of force, have been drawn in by linear
interpolation. The C-magnet results (which were obtained

where c ; e21. Since u= 3 Au 5 u=Au in this geometry, we with a somewhat different mesh than that illustrated) agree
see that the nonlinearity of the problem is such that c with the experimental measurements of the field gradients
depends on u=Au. It is convenient to consider c to be a to about 1% [16]. This accuracy is comparable with that
function of B2, so that Eq. (29) written out in full becomes obtained with other finite-difference calculations using

rectangular meshes of about the same spacing [17]. (Theo-
(c 1 2c9A2

x)Axx 1 4c9AxAyAxy 1 (c 1 2c9A2
y)Ayy

(30) retical studies of the discretization error of the solutions
1 4fj 5 0, of (12) for linear problems may be found in [8, 18].)

Two methods can be used to obtain derivatives of the
and (30) is elliptic if c 1 2B2c9 . 0, or de/dB , e/B, numerical solution: (a) right triangle zoning can be im-
which is usually the case. posed in regions where the derivatives are desired, and

Equation (29) is equivalent to (1) with the current den- derivatives can then be obtained by taking first and second
sity playing the role of source term. Its finite-difference differences parallel to the coordinate axes; (b) an interpo-
approximation in a triangle mesh is therefore (16) lating polynomial can be fitted by least squares to each

vertex and its neighbors, and then differentiated. The sec-O
i

wi(Ai 2 A) 1 4fI 5 0, (31) ond method has the advantage of not requiring special
zoning, and gives about the same accuracy when employing
harmonic polynomials as basis functions and solving by

where Ai , A now stand for the vector potential, and means of the generalized matrix inverse [19].
Using linearized overrelaxation, the calculating time

with an IBM 7094 is 3 ms per mesh point per cycle for pointsI 5 O6
i51

ji11/2ai11/2 (32)
in iron, and 0.6 ms for points not in iron. The optimized
overrelaxation parameter usually lies between 1.90 and

is the total current through the secondary mesh dodecagon 1.96, and from 200 to 800 cycles are usually required for
surrounding the vertex x, y at which A is defined. convergence in a 40 3 40 mesh. Thus nonlinear problems

The boundary conditions for the magnetic field require with 1600 mesh points take 15–30 min to converge, while
that at an interface the normal component of B, Bn , and linear problems run about five times faster.
the tangential component of H, Ht , be continuous. Because
A has only a z-component, its gradient and curl are equal
in magnitude and orthogonal to each other. Thus, ex-
pressed in terms of A,

Ht 5 (cB)t 5 (c= 3 A)t 5 (c=A)n

and

Bn 5 (= 3 A)n 5 (=A)t ,

and we have already shown these to be continuous in our
finite-difference approximation (Section 3).

On external boundaries we assume a condition of no
leakage of magnetic flux, so that A 5 0. For symmetric
magnets we calculate only one-half of the magnet and

FIG. 4. Logical map of C-magnet mesh.make the normal derivative of A equal to zero on the
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FIG. 5. C-magnet showing triangle zones.

Nonlinear overrelaxation by Newton’s method approxi-
mately doubles the calculating time per iteration (in iron)
and by Aitken’s d2 method approximately triples it, but
has been found by others [14] to reduce the number of
iterations substantially in simple problems. Our experience
thus far shows that, although Newton’s method permits
the optimum g of (23) to be used both in air and iron,
it requires about 50% more cycles to converge than the

FIG. 7. Enlarged view of C-magnet.linearized method. With the Aitken d2 method, instability
required use of a value for g in the iron less than the
optimal value, causing even slower convergence than with
Newton’s method. Hence Eq. (2) becomes

6. EXTENSION TO PROBLEMS WITH 1
r

= ? (rl =w) 5 c
­w

­t
.

CYLINDRICAL SYMMETRY

The diffusion equation (2) and the magnetic field equa- We see that by replacing l by rl, and c by rc, we can treat
tion (29) with cylindrical symmetry can be treated in cylin-
drical coordinates r, z, u by transforming to Cartesian coor-
dinates.

Diffusion Equation

Let w 5 w(r, z), independent of u, and let =, =c represent
the del operator in Cartesian coordinates and cylindrical
coordinates, respectively. Then for any vector function f
which is independent of u we have

=c ? f 5
1
r

= ? (rf).

FIG. 6. C-magnet showing equipotentials. FIG. 8. Figure 7 without zone lines.
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=c 3 g 5 = 3 g.

Since A(r, z) and j(r, z) have only u-components,

B 5 =c 3 A 5
1
r

= 3 (rA).

Since B has only r- and z-components,

=c 3 (cB) 5 = 3 (cB) 5 = 3 Fc
r

= 3 (rA)G5 4fj.

Thus (29) becomes

FIG. 9. n vs r for C-magnet (n 5 u(R0/B0)­B/­ru, R0 5 70.079 m).

= ?Fc
r

=(rA)G5 24fj.

the cylindrical coordinates z, r as if they were Cartesian
We see that c/r replaces c, rA replaces A, and rB re-coordinates x, y, respectively.
places B.In finite difference form we have in place of (6) and

For a current loop, A p r for small r, A p 1/r2 for large(8), respectively,
r. Therefore the boundary conditions on rA are rA R 0
as r R 0 and r R y.G 5 O

i
ci11/2r111/2ai11/2 ,

wi 5
1
2

(li11/2ri11/2 cot ui11/2 1 li21/2ri21/2 cot ui21/2),

where ri11/2 , the average radius of triangle i 1 1/2, is
given by

ri11/2 5
1
3

(r 1 ri 1 ri11)

and ri11/2 is the average radius of a quadrilateral at vertex
r given by

ri11/2 5
7

12
ri11/2 1

5
12

r.

Magnetic Field Equation

For a vector function f(r, z) which has only a u-compo-
nent we have

=c 3 f 5
1
r

= 3 (rf).

For a vector function g(r, z) which has only r- and z-compo-
FIG. 10. A quadrupole magnet (from [16]).nents,
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the mesh points along boundaries and interfaces, but this
method is generally not useful for the interior points of
regions of arbitrary shape.

A satisfactory method can be derived by formulating
the zoning problem as a potential problem, with the mesh
lines playing the role of equipotentials [20, 21]. The triangle
mesh which we use can be mapped into a regular equilat-
eral triangle array composed of three sets of straight lines
intersecting each other at 608, of which any two sets are
sufficient to define the mesh. Let one of these two sets be
associated with a function x(x, y) and the other with a
function c(x, y) which satisfy the Laplace equations

=2x 5 0, =2c 5 0 (33)

over each region with boundary conditions determined
by the interface and boundary zoning. Solving (33), the
intersecting ‘‘equipotentials’’ x 5 constant and c 5 con-
stant, together with the third set drawn through the inter-
section points, form the desired triangle mesh. Because of
the well-known averaging property of solutions to La-
place’s equation, we might expect a mesh constructed in
this way to be, in some sense, smooth.

Equations (33) can be solved numerically by inverting
them and writing them in terms of x(x, c) and y(x, c).
Using the relationsFIG. 11. A sextupole magnet (from [16]).

xx 5 2
1
J

yc, cx 5
1
J

yx ,

7. OTHER APPLICATIONS

xy 5
xc

J
, cy 5 2

1
J

xx ,The method presented here can be applied to elliptic
equations which arise in other branches of physics. Some
equations of this type can be regarded as special cases of where the Jacobian J 5 xc yx 2 xx yc , we find that (33) are
the magnetostatic equation: for example, the restricted transformed into the inverse Laplace equations
form of Plateau’s minimal surface problem is equivalent
to (1) with l 5 [1 1 (=w)2]21/2 and S 5 0. In others, such axxx 2 2bxxc 1 cxcc 5 0,

(34)as the heat or diffusion equations, l is a function of w ayxx 2 2byxc 1 cycc 5 0
rather than of u=wu, or is independent of w. Applications
have also been made to nuclear reactor problems [7] where wherever J ? 0. Here a, b, c are the quadratic functions
S includes a term proportional to w.

a 5 x2
c 1 y2

c ,
APPENDIX

b 5 xxxc 1 yxyc , (35)
Numerical Construction of Topologically Regular c 5 x2

x 1 y2
x .

Nonuniform Triangle Meshes

A nonuniform triangle mesh for an arbitrary polygonal The solutions of the elliptic equations (34) give the coordi-
nates of a given equipotential directly.boundary composed of arbitrarily shaped regions is most

easily constructed by computer. In order to reflect the Finite-difference expressions for the derivatives oc-
curring in (34) and (35) can be obtained by the line integralrelative importance and the material properties of each

region, the mesh for a given problem should also be com- method using Gauss’ theorem [22]. We use a path of inte-
gration around a given vertex which for the first derivativesposed of regions which can be zoned to different average

mesh spacings, with the mesh spacing in each region vary- passes through the six neighboring points and for the sec-
ond derivatives follows the dodecagon in Fig. 1. Assigninging smoothly. Linear interpolation can be used to distribute
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converge rapidly, provided the initial approximation is sat-
isfactory (see below). Figures 5 and 7 show a typical mesh
obtained by this method. By the use of linear interpolation
on boundaries and interfaces, only a relatively few points
need be specified in the problem input (see Fig. 4).

The triangles produced in this way tend to be equilateral
far away from boundaries; the ci at each vertex become
nearly equal and Eqs. (38) become

x 5
1
6 Oi

xi ,
(39)

FIG. 12. A vertex and its six neighbors in x, c space. y 5
1
6 Oi

yi .

At the same time a P c, b P 0, and (34) becomevalues to x and c which differ by unity on adjacent lines
and vary linearly with position in x, c space, we find

xxx 1 xcc P 0,
yxx 1 ycc P 0,

(40)
xx 5 Ah[(x2 1 2x1 1 x6) 2 (x3 1 2x4 1 x5)]
xc 5 Ah[(x1 1 2x6 1 x5) 2 (x2 1 2x3 1 x4)]

showing that x and y approximately satisfy Laplace’sxxx 5 x1 2 2x 1 x4 (36)
equation in x, c space. Equations (39) were in fact thexxc 5 As[(x1 1 x6 1 x3 1 x4) 2 (x2 1 x5 1 2x)]
first to be used [5], and they produce a satisfactory meshxcc 5 x6 2 2x 1 x3 ,
for convex regions, but near a concave boundary, the
mesh lines tend to crowd together or even to fall outsideand similarly for the derivatives of y, where x, y is the
the boundary. However, since Eqs. (39) are linear theycenter point and we have identified x with the lines 2–1,
can be used, starting for example with x 5 y 5 0 at3–6, 4–5, etc., and c with the lines 2–3, 1–4, 6–5, etc.
all interior mesh points, to provide an initial approxima-(Fig. 12).
tion for (37).Substituting (36) into (34) and (35) we obtain for the

By redefining c to be a vertical zigzag line (for example,finite-difference analogs of (34)
2, 3, 4 or 1, 6, 5 in Fig. 12), a different set of weights ci

can be found which tend to produce right triangles [21].O6
i51

ci(xi 2 x) 5 0,
(37)

Nonuniform quadrilateral meshes can also be constructed
by this technique [20, 21].

O6
i51

ci(yi 2 y) 5 0,
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